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Synthesis of (R¢,Ss)-1,1,1-Trifluoro-3-(p-tolylsulfinyl)-2-propanol
by an Asymmetric Reduction with a Yeast, Yamadazyma farinosa, as a Key-step
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(Re,Ss)-1,1,1-trifluoro-3-(p-tolylsulfinyl)-2-propanol (>99%
¢.e.), an important reagent for the asymmetric protonation of
substituted enolates, was prepared (70%) from (S)-methyl p-tolyl
sulfoxide. The stereoselectivity of the Yamdazyma farinosa-
catalyzed reduction of carbonyl groups, the key step for the
introduction of an asymmetric carbon, was greatly affected by
the stereochemistry of the asymmetric sulfur atom. The
reduction of (S)-1,1,1-trifluoro-3-(p-tolylsulfinyl)-2-propanone
proceeded smoothly and in a quite stereoselective manner to
give the desired compound, while a 76 : 24 mixture of (Rc,Rs)-
and (Sc,Rs)-isomers was obtained from the substrate with the
opposite (R)-configuration.

Asymmetric protonation of enolates is an excellent way for
the preparation of enantiomerically enriched forms of carbonyl
compounds.! Among the chiral proton sources, 1,1,1-triftuoro-
3-(p-tolylsulfinyl)-2-propanol (1) have been developed by one of
the authors (H. K.)2:3 The importance of the combination of the
two chiral centers has been advocated. For example, in a
matched case, the asymmetric yield was very high; however, in a
mismatched case, the enantiofacial selectivity of protonation was
not satisfactory, as shown below. Needless to say, the
importance of both enantiomeric forms of reagents has been well
recognized, so as to secure both enantiomers of o-substituted
ketones. Here we report an expeditious route to (Rc,Ss)-1, the
opposite enantiomer of (Sc,Rs)-1, whose chiral centers are
arranged as a matched pair.

So far, chiral 8-hydroxy sulfoxides, for example, isomers
with (R*c,S*s)-stereochemistry, have been synthesized by means
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of the diastereoselective reduction of the enantiomerically
enriched form of B-keto sulfoxides with reducing agent such as
DIBAL-H.45 On the other hand, for the introduction of the
second chiral center, the results established in our previous work
led us to the use of the yeast-catalyzed reduction with
Yamadazyma farinosa IFO 10896,5.7 whose reduction proceeds
in an enantiofacially selective manner, according to the so-called
‘anti-Prelog’ rule.

Toward this end, (S)-methyl p-tolyl sulfoxide (3), which was
prepared by enantioselective -BuOOH-mediated oxidation of
the corresponding racemate catalyzed by BINOL-Ti,® was
converted to ($)-2 in a conventional manner.? Treatment of (S)-
2 with incubated cells of Y. farinosa provided (Rc,Ss)-1 and
(Sc,Ss)-1 in a highly selective manner (98 : 2) in 70% yield from
(5)-3.10 The desired (Rc,Ss)-isomer could be isolated in pure
state by silica gel column chromatography.411
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We became interested in the effect of the pre-existing
oxygen functionality and chirality on the sulfur atom,¢12.13 and
the results are summarized in the Table 1. The reduction of the
opposite enantiomer of the substrate, (R)-2, afforded a 76 : 24
mixture of (Rc,Rs)- and (Sc,Rs)-1 (entry 2). The difference was
in good accordance with the results observed by Iriuchijima and
Fujisawa namely, that the whole cell enzyme system in baker's
yeast showed a contrasting action toward the enantiomers of [3-
sulfinyl ketones.!2:13 It was interesting that the corresponding
sulfone (4) showed a similar low selectivity to that for (R)-2
(entry 3). Obviously the introduction of the oxygen atom in pro-
(R) orientation had a lowering effect on the enantiofacial
selectivity (entry 1-4). It is noteworthy that the present
observation on the influence of stereochemistry was the
complementary result with that of baker's yeast-catalyzed
reduction. In the latter case, pro-(S) oxygen atom had such a
lowering effect. These results may be ascribable to the
contribution of plural enzymes in the whole cell of the yeast
strain, which has been revealed in the case of baker's yeast-
catalyzed reaction.4
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Table 1.
O : OH
Y. farinosa
e O e
Y . Y
Substrate Product
Entry

X Abs. Y Yield Enantiofacial
config. /%  selectivity

1 2 S=0 S CHy 8  98:2

2 2 S=0 R CHy 8  76:24
3 4 SO, — CHy 70  75:25
4 5 S — H 712 93:7
2See Ref. 6,15

In conclusion, (Rc,Ss)-1,1,1-trifluoro-3-(p-tolylsulfinyl)-2-
propanol (1, >99% e.e.) was prepared in 70% yield through two
steps from (S)-methyl p-tolyl sulfoxide (3), by a Yamadazyma
farinosa-catalyzed reduction as the key step.
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